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Abstract— Prognostic techniques are intricately tied to the
physics of incipient-fault-to-failure progression, and hence
most prognostics research has focused on developing
techniques for a range of components such as rotating
machinery parts. The research and development of such
techniques has relied on the theories of material science,
structural mechanics, domain expertise, as well as empirical
studies such as accelerated run-to-failure testing. Even after
prognostic models have been. developed and operationally
validated for various components of a system, the challenge
remains how prognostic assessments from individual
components of a system (such as an aircraft engine) should
. be used to make maintenance and logistics decisions. In this
.- paper, we describe an integration process where the primary
focus is on bridging the gap between the individual
:component prognosis and the system-level reasoning
. required to support maintenance and inventory management
> decisions. The research involves integration of component
health assessment with an information fusion mechanism -
that operates in conjunction with a higher-level reasoning
engine which utilizes system-level structural and functional
dependencies. The higher-level reasoning engine generates
a system availability analysis that leads directly to actionable
tasks for the inventory and maintenance management
decision support systems. The inventory management
decision support system involves predicting the spares
requirements, and when this is integrated with remote health
monitoring and intelligent diagnostics and prognostics, it
can assess different sparing allocation schemes, and
maximize system availability within budget constraints.
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1. INTRODUCTION

A. Maintenance Management

Current maintenance practices in the world of aviation, in
particular the rotating machinery in Air Force on aircraft- -
engines, such as the turbine engine disks, result in the

replacement of 99 “good” or working components just to

insure against a single “bad” or cracked disk [1]..Since the-.
DoD is increasingly keeping older aircraft and flying them

past their originally estimated life, yearly expenditures on

replacing the engine disks of older aircraft alone is in:excess

of $100 million. Considering the false removals, the .
unnecessary expenditure on working engine disks constitutes

$99 million out of the $100 million. Similar statistics are.
likely. for other-critical engine components, such as the fan

compressor and the blades. ~ - : : :

Excessive false removals are only part of the story. The
current state-of-the-art on detecting cracks in rotating parts
of an engine is primarily through visual inspections and
borescope visualizations. Cracks and crack propagation in
the fan compressor, blades and disks, chipped or cracked
gear teeth are all of serious concern to the aviation industry
as well as the DoD. The entire process is predictably rife
with false alarms and, on a more dangerous note, could
potentially harbor small number of missed detections as
well (recall that from a receiver operating characteristic
(ROC) analysis, high false alarms are accompanied by
smaller missed detections). In those rare cases which may go
unnoticed, the result can often be catastrophic.

A well implemented component-level and system-level
prognostic system, as shown in the idealized schematic in
Figure 1, can alleviate some of the shortcomings identified
above. Each intersecting node in the figure represents the
health management capabilities of the specific monitoring
functions. While many such systems do analyze, detect and



assess the current health state of the components, of late,
only a few of the tools venture into the area of damage
prediction and provide actionable recommendations for
managing the component. Consequently, systems that utilize
information related to material-level prognosis and that can
aggregate this information to determine the functional state
of the component facilitate a more effective condition-based
maintenance scheduling than time-based preventive
maintenance scheduling practiced today. This also results in
better utilization of the component and significantly reduced
false removals.

Monitaring
Functions

Health” -
" Menagenient
Capabilities

Figure 1: Algorithmic view of a comprehensive PHM .
(Prognostic Health-Management) solution. In this case, the

" . monitoring functions depicted are relevant to an aircraft

engine.

A" prognostic system that drives. an improvement in the.

maintenancé management typically will require integration
of three essential capabilities — physics-based health and
damage propagation modeling, adequate non-invasive
mechanisms to determine the appropriate quantitative
knowledge that leads to health assessment and an
information fusion mechanism that operates in conjunction
with a higher-level reasoning engine.

B. Inventory Management
Inventory management in the aviation industry is
challenging due to the following difficulties [2]:

= High Inventory Value - Aviation equipment is highly-
specialized with expensive spare parts; therefore,
holding those parts in inventory to ensure system
availability can result in enormous inventory costs.

» Distributed Vendors - Outsourcing service to third-
party aviation vendors is common; hence
collaborative planning, global visibility and service
coordination among multiple vendors are essential.

» Fleet Availability Targets - In addition to fill rate for
spares, service organizations must be able to meet
fleet availability targets.

» Sporadic and Intermittent Demand - Causal factors

such as operating hours and operating conditions

result in high demand variability. Without reliable
demand histories, it is difficult to calculate the
probability of failure events.

= Procurement Lead-Time Variability - Spare parts for
aircraft systems often have long lead-times, making
spares optimization difficult.

Despite the difficulties in establishing an efficient inventory
management for such complex and dynamic systems, the
return on investment is high. AeroStrategy's analysis [3]
suggests inventory worth $44 billion -is now held in the air
transport MRO (Maintenance, Repair, and Overhaul) supply
chain, supporting nearly 17000 aircraft. This implies that
about $2.5 million worth of inventory is available for each
aircraft. It is easy to see that significant cost savings can be
achieved through efficient inventory management by a mere
5% improvement.

It has been shown that utilizing information about the
demand and inventory activities and incorporating them: in
day-to-day decision-making in supply chain ‘management
will help us achieve better material flow and on-time
deliveries [4]. However, due to the need for significant

- human involvement, the information needed for demand
- forecasting is “very often buried in large volumes of

operational and': maintenance data collected and left
unutilized. Therefore, it will be especially beneficial if we
posséss the automated reasoning capabilities to identify
potential problem systems- or “components; update repair
times and failure- ratés from maintenanceé log data or.
operational ‘data; and use such’ diagnostic and prognostic
information for inventory management. o

In this paper, we demonstrate a seamless process, in which
we utilize the material-level health assessment and damage
prognosis, and the system level structural and functional
dependencies to generate a subsystem or component
prognostic analysis that leads to directly actionable decision-
making tasks for spares allocation and inventory
management. A system, as described above, when
effectively implemented, can enhance the ability of decision-
makers to efficiently deploy and manage their assets in
rapidly evolving combat situations where demands on the
component can be intense and stressful.

C. Scope and Organization of the Paper

The paper is organized as follows. Section 2 outlines a
smart-service concept in which diagnostic and prognostic
reasoners work hand-in-glove with the inventory
management module for planning maintenance actions and
replenishing supplies preemptively. Section 3 describes a
model-based prognostic process and reports on a
demonstration of the prognostic procedure on a generic
centrifugal pump system. In Section 4, we describe a
simulation-based approach to system availability analysis,
and demonstrate an integrated process in which the updated
residual life predictions obtained from prognostics are used



to forecast service demand and to assess the efficacy of
different spares allocation schemes in maximizing system
availability using an engine system as an example. Section 5
concludes the paper with summary and future research
directions.

2. CONCEPT FOR A “SMART SERVICES” SOLUTION

Figure 2 depicts our concept of how an inventory
management module can be deployed and integrated with
diagnostics and prognostics to provide smart services, i.e.,
planning maintenance actions and replenishing supplies
preemptively, rather than retroactively. Unlike conventional
maintenance strategies, prognostic techmiques predict
component degradation based on observed system condition
to support “just-in-time” maintenance. The ever increasing
usage of model-based diagnosis and prognosis of systems
facilitates the integration of model-based diagnosis and
prognosis of systems, leadmg to condition-based spares
management and maintenance. In the proposed archltecture,
the démand forecastlng and mventory management module
incorporates updates on system operating conditions and
health information collécted and inferred by a diagnosis and
. prognosis server.. The functlons of the blocks developed in
this paper are dlscussed in ‘greater detail bélow, while the
spares allocation optmnzatlon module w111 be mcluded in
our future research.
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Figure 2: Concept for a “Smart Services” Solution
Supported by Diagnostics and Prognostics

Budget Constraint

A. Demand Forecasting

Demand for spares cannot be easily gauged because the
consumption of spares is event-based and therefore is
probabilistic in nature. The events themselves can be
scheduled (planned) or unscheduled (unplanned). Scheduled
maintenance, system overhauls, etc., would fall in the first
category, whereas random breakdowns would be in the
second category. The intermittent nature of spare part

demand due to breakdowns makes it impossible to apply
conventional time series based algorithms. Moreover, since
the real operating conditions of a component usually differ
from assumed ones, discrepancies arise between specified
constant mean-time-to-failure and true residual life time.
Predictions of residual life time and their variances based on
observed environment (e.g., temperature, humidity and dust)
and operating conditions (e.g., vibration and pressure) or
historical/field data have inherently much higher quality than
constant mean-time-to-failure data. Model-based prognostic
approaches are applied to obtain component degradation
profiles, estimate the consequences of such degradations on
system performance variables, and dynamically evolve the
residual life time prediction based on the load and
environmental conditions.

The main idea is to move away from traditional demand-
driven forecasting that relies on a time-based scheduled
maintenance approach to condition-based forecasting using
remaining life predictions of components. We describe, a
model-based prognostic approach in section 3 for computing
the remalnlng useful life of a component.

B: ‘System—level Availabi{ity Estimation
After obtaining the remaining useful life estimation using
model-based prognestic -approaches, we perform system-

. level availability analysis to evaluate the performance .of

each candidate spares allocation- scheme. The system
availability - analysis methodology . is hierarchical . and
comprises of .models at two. tiers:" At the lower tier is a
component-level model that considers the impact -of spares
on component availability. At the higher tier is a system-
level model that considers the impact of system architecture,
mission phases, and different system configurations over
mission phases on system availability. The component
availabilities computed from the lower tier models are
propagated to the higher tier model to enable the
computation of system availability. The details of system
availability analysis approach will be described in Section 4.

3. MODEL-BASED PROGNOSTIC TECHNIQUES

A. Approach

The model-based prognostic approaches are applicable in
situations where .accurate mathematical models can be
constructed from first principles. These methods use
residuals as features, where the residuals are the outcomes of
consistency checks between the sensed measurements of a
system and the outputs of a mathematical model. The
premise is that the residuals are large in the presence of
malfunctions, and small in the presence of normal
disturbances, noise and modeling ‘errors. Statistical
techniques are used to define the thresholds to detect the
presence of faults. The three main ways of generating the
residuals are based on parameter estimation, observers (e.g.,



Kalman filters, reduced order unknown input observers,
Interacting Multiple Models [7]) and parity relations.

Figure 3 illustrates our adaptive model-based prognostic
process [6]. In this process, first, a system degradation
model is identified and data from model-based simulations
under nominal and degraded conditions are collected.
Oftentimes, simulation tools have already been developed,
such as the TRICK simulator for the orbital maneuvering
system/reaction control system of NASA spacecraft and the
STORM model for P&W engines; then we can use these
tools directly to obtain operational data under different
usage profiles.

Modeling Using

Simufation Déta

Figure 3: A Model-baséd Pro gn&;stig ll_’r'roceAs,s

Becaduse of the continuously changing nature of an abnormal
condition, the severity of a fault increases with the usage of
the system. This change in fault severity over time forms a
trajectory of degradation, which is dependent on the usage
profiles  (environmental and operating conditions).
Therefore, in the second step of the process, prognostic
models based on different random usage profiles and
conditions (termed modes) are constructed. Third, the
Interacting Multiple Model (IMM) approach is used to track
the hidden damage to make the prognosis adaptive to the
current usage profile, while remaining useful life prediction
is performed by mixing mode-based life predictions via
time-average mode probabilities. A by-product of this
process is the prediction of Time to Criticality, defined as
the time from the indication of a fault or degradation of a
function to the complete failure of that function. Comparing
this measure with the Time to Remediate will offer us
insights into whether a catastrophic system failure can be
confidently prevented. The solution proposed here is generic
and has the potential to be applicable to a variety of aviation
systems and their components. The main advantage of such
a model-based prognostic process over data-driven
approaches is its ability to incorporate a physical
understanding of the system for monitoring. Another
advantage is that, in many situations, the changes in feature
vector are closely related to model parameters. Therefore, it
can also establish a functional mapping between the drifting

parameters and the selected prognostic features. Moreover,
as understanding of the system degradation improves, the
model can be adapted to increase its accuracy and to address
subtle performance problems. Thus, our approach may be
viewed as a Bayesian approach to prognosis, as opposed to a
Maximum likelihood approach based purely on data.

As illustrated in Figure 3, our adaptive model-based
prognostic process consists of six steps for predicting the
residual life time of a component/system. The details of
each step can be found in [6]. In Section B.2, we
demonstrate the six-step prognostic process using an
example scenario.

B. Application to an Example System

In this section, we study the system model of a generic
centrifugal pump system and predict the residual lifetime of
the system using the process elaborated above.

B.1 Basic Principles of a Generic Centrifugal Pump

The purpose of a-centrifugal pump is to.convert the energy
of an electric motor or engine into kinetic energy, and then
into pressure- of a fluid that is being pumped. Figure 4
illustrates the operation of a centrifugal pump. '

Figure 4: Operation of a Centrifugal Pump

The simplified physical model of a centrifugal pump is
derived using conservation of power and momentum. The
corresponding equation is

T'e = pout '¢0ut (1)
where T is the input torque, & represents angular velocity of
the pump rotor, p,,, is the pump pressure, and @, is the

corresponding mass flow rate.
Conservation of momentum states that the mechanical

momentum J-’l' .dt equals the hydraulic momentum. The

coefficient of transmission of the gyrator model includes two
parameters, a and b, that represent the cross sectional area
and curvature of the veins. The amount of mass moved by
the pump depends on the total area of its vanes, a minus the
effective loss in moved mass due to the curvature of the

vanes, b. This is given as J-(a.e -bg,)dt.
The hydraulic momentum of the pump is represented by

Bt f(a.e —-b.g,,).dt. Therefore



[zdt=¢,, [(a6-bg,)dt @
Eq. (2) can be rewritten as:
7=4,,(a6-b4,)+4,, [(@6-bg,)dt @

which for relatively low flow accelerations compared to
flow  velocity, yields the constituent relation

7=¢,,(a6-b.¢,). Thisyields
pout (a 9 b ¢0ut (4)

Eq. (4) describes a modulated gyrator with modulus

(a6-b.¢,,).

B.2 Component-level Degradation Model

The analysis done here is only to explore the feasibility of
applying the methodology described in Section 3.A for
residual life prediction of the pump system. Therefore, a
simplified physical model of the pump is used instead of
complex finite element models. The flow in the system is
assumed to be steady and the computational fluid dynamics
~model is not used. Future application may require advanced

numerical simulation instead of the current simplified model.
“The -goal for this part of the methodology is to link the

" possible causes of the fault, established at the’ system level

" (e.g., change in transmission efficiency from motor to pump, -

possible change in surfacé area of pump vanes, and increasé
- in resistance parameter) to root causes that are defined by
physics of failure models. An example failure"scenario is

illustrated below. Identification of a:root cause eriables. one‘
“to link mathematically the effect of damage at the material .

and. structural level to rate of change of system level
parameters. Studying these rates and simulating system
behavior and performance using these rates, provide a
framework for predicting the residual lifetime of the system.

An Example Scenario: Corrosion/erosion damage to vanes

Corrosion/erosion damage removes material from
components, such as vanes in the current example. A
schematic picture of this type of damage is shown in Figure
5. The corrosion/erosion damage may change the vane
surface and reduce the total area of vanes in moving flow.
Also, the irregular surface of vanes may cause turbulence in
the pump and reduce the -efficiency in moving flow. All
these effects can be considered as loss of vane area (a).

Aa Atrr
T
Vein Pitting growth

Figure 5: Schematic corrosion/erosion damage to the vanes
(left) and schematic pitting growth model (right)

To calculate the area loss due to corrosion, detailed local
flow analysis and dissolution mechanism are required. A
simple calculation is shown here for illustrative purpose
under simplified assumptions.

Step 1. Identify system model

The corrosion rate § of vane material is taken from [13] as
g=K(c,—c,) (5)

where K is the mass transfer coefficient dependent on the

¢, is the corrosion product concentration at

flow velocity,
the liquid-solid interface dependent on the local temperature,
and ¢, is the concentration in the bulk flow and is often set
to zero [13]. We assume constant flow velocity and
temperature, and same concentration in the liquid. Thus, q s

K and c, are constants.

Further, we assume the corrosion damage to the vane occurs
at the edge. The vane area loss is due to edge pitting growth.
The growth pattern is assumed to be circular, as shown in..
Figure 5 (right).

The area loss at one plttmg locatlon can.be expressed as

Aa; =gnrAt = gmjtAt - (6)
Integrating Eq. (6) over time, we obtain the area loss 4t one

. pitting location as a function of time £, as plotted in Flgure 6.

The total vane area loss Ad can be expressed as
Aa= Aa = sal
o2 @)
§*=(c, - Cb)ZZKiZ
i=1

Area loss/Leaking coefficient

Time
Figure 6: Schematic Plot of Area Loss Function

At a time instant ¢;, the pump pressure and flow rate can be
expressed as

Prou=(a"0—b.0" )b (8)
where the superscript * indicates the quantity is at the time
instant #;. Based on the first order perturbation theory, these
quantities can be expressed as



Pow= P, +Ap

Fou=0—0p O

a =a-Aa
Substituting Eq. (9) into Eq. (8), we obtain
PoutAp =a6® —Aab-bg,, 0 +bAPE (10)
Substituting Eq. (4) into Eq. (10) and solving for Aa, we

obtain
bAPE —
A= _%‘E
where Aa, A@ and Ap are all functions of ¢ during the
entire service life of the pump system.

a1

Eq. (3) consists of fast-time dynamic equation and
measurement equation. To construct a complete prognostic
model, we need a slow-time model for the degradation
measure & In this model, we assume that the area loss of the

vanes during one simulation episode i, A¢, , is a-function of -

" & the area loss at the beginning of the episode (), and the

loa@i during this episode, in the form of
Az =0.1-(za)- 3 (p?f 11.1221.4(a, 10)? 2
: = . : ) :

T 47.33(a, /) -13.08(a, /a)° +14(a, /a)'

" where n; is the cycle number and- {P.J}T:] is the load

. pararneter, both of which are -obtained via some “cycle

‘counting- approaches, such as rainflow, mean-crossing, etc.
[10] based on the stress/strain/load information during the
episode, which is assumed to be a function of ¢,,, . In this
paper, we adopt the most commonly used cycle counting
method, viz., the rainflow method. This method is able to
catch both slow and rapid variations of load by forming
cycles that pair high maxima with low minima, even if they
are separated by intermediate extremes [14]. We assume that
the maximum & is d/4 and define the degradation
measure as & =4/ a . Apparently, £ =1 marks the end

of life for the pump.

Step 2. Simulation results

The system model in Eq. (3) was simulated with a standard
4™ order variable-step-size Runge-Kutta method. Figure 7
shows the results of 100 Monte-Carlo simulations for the
pump system under three different load conditions, with the
input torques equal to 2000, 2500, and 3000 Nm,
respectively, and the angular velocity is set at 165 rad/s for
all three modes. The nominal cross sectional area of the
pump, a = 0.3m>. The perturbations are added to the inputs,
i.e., the torque and the angular velocity, in the form of a
Gaussian noise with zero mean and variances that are set to
make the signal-to-noise ratio (SNR) equal to 1 in all three
modes. From Figure 7, we can see that compared to the

severely overloaded condition, the increases in the life times
for the overloaded and normal conditions are about 40% and
140%, respectively. If we assume a 50% calendar time usage
of the pump system (12 hours a day), the expected life of the
pump system will be approximately 3.8, 5.4, and 9.2 years,
respectively, for the three load conditions (severely
overloaded, overloaded and normal).

Step 3. Prognostic modeling from simulation data

Since the pump system has three random load conditions,
the number of modes in the degradation model is 3. The
model parameters for each mode can easily be estimated
from the Monte-Carlo simulations as described in [6].

1 [ .....
0.9 .
! End of Life
‘5' 0.7- :
=] m
7] Severely
g o8 overloaded %ﬁcﬂ?ﬁi condition
= sl condition N iif'mode o (mode 1)
s {mode 3) A \ \
S 04} i
o
T 0.3}
a
0.2}
0.1
0 - PR = s . g N N N N . - :
0 20 40 60 60 100 120 140 160

O_pératiohal Time (bess)

' Figure 7: 100 Monte-Carlo Si‘rﬂuléﬁions for 3 Random Loads

Step 4: Feature estimation

The hidden variable £ is estimated. from the input/output
data, i.e., input torque, input angular velocity and output
flow rate, through linear least-squares estimation by
minimizing the sum of square error between the estimated
output and the actual measurement over the observation
period.

Step 5: Track the degradation measure

For IMM implementation, we use the following transition
matrix:

09 0.05 0.05
$=(0.05 09 0.05
0.05 0.05 09

where ¢ij =P(mode j in effect at time k+1Imode i in effect at

time k). The system mode changes are simulated as follows.
Mode 1: [0, 40x10%s], Mode 2: [40, 80><106s], Mode 3: [80,
tond), Where £, is the time at which &= 1.

Figure 8 shows the plot of mode probabilities of the IMM.
The mode probabilities for the three modes are initialized to
(72;(0)=1/3, j=1,2,3) and then Mode 1 reaches the highest

mode probability (approximately 0.80~0.90) in the range [0,



40x10%]. Mode 2 reaches the highest mode probability
(approximately 0.90~1.0) in the range [40, 80x10°%]. Finally,
Mode 3 dominates the remainder of simulation with the
highest probability of around 1. Thus, the IMM (which may

- be viewed as a software sensor) tracks the load conditions
very well based on noisy data.
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Figure 9: Estimate of remaining life for a single run

Step 6. Predict the Remaining Life

Figure 9 presents the estimate of residual life (solid line)
using IMM mode probabilities for a single run of the
scenario considered in Step 5. We can see that, initially, the
residual life estimate follows Mode 1 and after switching to
Mode 2, the residual life estimate is in between those of
Modes 1 and 2, which is what one would expect. Finally, the
residual life estimate approaches that corresponding to
Mode 2. The dashed bold line represents the residual life
estimates assuming that the load condition can be measured
accurately via a sensor. In such a case, the current mode is
known. We can evaluate the contribution of the additional
sensor to the accuracy of the residual life estimate. In Figure
9, we can see that the IMM produces residual life estimates

that are very close to the estimates that one would get with
the additional sensor. The difference between these two
estimates is relatively high (about 10%) at the beginning (£
< 0.2), and they are virtually identical as degradation
measure £ increases.

4. SPARES ALLOCATION ASSESSMENT

A. System Availability Analysis Approach

The system availability analysis methodology comprises of
both component-level and system-level analyses.

A. 1 Component-level Model:

We describe the lower tier component-level availability
model in this section. Assume that the time to failure of a
component is exponentially distributed. When a component
fails, it is replaced immediately with a spare if a spare is
available. However, if a spare is not available, then
additional spares need to be procured for replacement. The
repair times, both with and without the availability of spares
are assumed to be exponentially distributed. For component
i, let:

5i— Nuxﬁber of spares. -
A; — Failure rate.
L; — Repair (replacement) rate when a spare is available.

B ¥; — Repair (replacement) rate when a spare is not available.

px — Probability that k spares a'r_e obtained to rebuild
inventory. - -

Figure 10 shows the Markov modél of the failure and repair
process of a component in the presence and absence of
spares. In the model, the state is described by a 2-tuple (c,d),
where ¢ is the number of spares available in the inventory
and d indicates whether the component is operational or
failed. Thus, c ranges from s; to 0 and d can take two values,
namely, U (Up) and D (Down). The component starts in
state (s,U) where all the s; spares are available and the
component is operational. From this state, the component
can transition to state (s,D) with rate A; upon the failure.
From the state (s;,D), a transition occurs to state (s-1,U)
with rate p;, when the failed component is replaced by an
available spare. This continues until state (0,U) is reached in
which the component is operational, but no additional spares
are available. A failure in this state causes a transition to
state (0,D) with rate A;. In the state (0,D), since no spares are
available, additional spares need to be procured. It is
certainly necessary to obtain one component to replace the
failed one. In addition, extra spares may be obtained to
rebuild the inventory of spares. With probability py,
additional spares are obtained, where k ranges from 0 to s;.
As a result, from the state (0,D), transition to state (k,U) can
occur with rate Yp,.



Figure 10: Comﬁonent-level Availability Model

A. 2 System-level Model:

The system availability model at the higher tier of the
hierarchy is described in this section. In the base scenario,
all the components of the system are active when the system
is operational. In this case, the system may be considered to
have just one phase and the components of the system may
be organized into a series, parallel, k-of-n or a combination
of these structures. A reliability block diagram may be an
adequate system availability model in this case.

For some systems, execution may proceed through phases,
and not all components are active/operational in all phases.
For such a system, the phased execution may be modeled as
a continuous time Markov chain, with the state space given
. by the phase of system execution. Let i denote the number

of phases, with the sojourn time in each phase exponentially -

distributed. We let 7 denote the parameter- -of the
exponential distribution of sojourn time in phase [. Further,
we let w), denote the probability that the system transitions

from phase [ to phase r, with /.and r ranging from 1 through

nt.

A. 3 Computation of System Availability

Most of the efforts in evaluating highly dependable systems
are limited to analytical or numerical solutions, usually
restricted to Markov models. The applicability of these
techniques, however, is hindered by practical problems, such
as state-space explosion of Markov representations of real
systems. Because the number of states in Markov models
usually grows exponentially with the number of system
components, and because of storage and computational
limitations, only relatively small systems can be analyzed
using numerical solution techniques.

When conventional analytical/numerical methods are no
longer feasible, analysts often turn to computer simulation,
with the obvious advantages of flexible representation of
complex systems at the desired level of abstraction and low
storage requirements. However, the accurate estimation of
availability using simulation requires frequent observations
of the system failure event, which by definition are rare
events in highly-dependable systems. This renders
conventional simulation impractical for evaluating such
systems. To solve this problem, there have been
considerable and successful efforts to develop fast
simulation techniques based on Importance Sampling. The
basic idea of Importance Sampling is quite simple: simulate

the system using new probability-dynamics (different from
the original probability-dynamics of the system), so as to
increase the probability of typical sequences of events
leading to system failures. The obtained availability measure
in a given observation is then multiplied by a correction
factor called the “likelihood ratio” to yield an s-unbiased
estimate of the measure. Appropriate and careful choice-of
the new underlying probability dynamics of the simulated
system can yield an appreciable reduction in the variance of
the resulting estimate, which implies appreciable reduction
in the simulation time needed to achieve a specified
precision [5].

The methodology of applying the Importance Sampling
approach to estimate the system.availability with spares
information is outlined in [17].

B. A Case Study

In this section, we apply the techniques described above to
evaluate and compare different spares allocation schemes. In
this study, we obtained a Detailed Maintenance Data report
generated for Type Equipment Code' (TEC) code AMAF
and Work Unit Code (WUC) “27%” (F/A-18 Engine
System) during 10/01/05 - 10/10/06 from Navy’'s
DECKPLATE (Decision Knowledge Programming for
Logistics Analysis and Technical Evaluation) data
warehouse. This report records for each BuSer (Bureau
Serial No.) the maintenance action taken, the WUC, the
maintenance level, the man hours spent, the type of

‘maintenance, the removed part No., as well as the installed .

part No. Out of the 10930 entries, we notice that the WUCs
with prefix “2747” have the most entries. Therefore, we
chose the engine subsystem and its components with WUCs
of the form *“2747*” to build a conceptual TEAMS [15]-[16]
hierarchical model for demonstration.

The TEAMS model, as shown in Figure 12, consists of 31
components, corresponding to the WUC code list with
prefix “2747” obtained from Navy’s CMIS (Configuration
Management Information System) system. The components
with the longest WUC codes are at the bottom level of the
hierarchy. The mean-time-to-repair for each component is
estimated based on the man hours spent, as entered in Figure
13, while the failure frequencies are used as estimates of the
failure rates. Figure 11 shows a pivot chart of the failure
frequencies as recorded in the report. The chart shows that
the Anti-icing Valve (WUC 2747D) has the most entries
during the reporting period. For this study, its failure rate
was set to be 0.0001, while all the other components were
assigned lower failure rates proportional to their failure
frequencies as recorded in the report. In general, all
components were assumed to be single points of failure
(series arrangement in the reliability block diagram);
however, to demonstrate the ability to handle other system
configurations, some redundant configurations have also
been assumed in the model, as shown in the small block in
Figure 12.
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Figure 12: A Conceptual Hierarchical TEAMS Model for
Engine Components with WUC Codes “2747*”

Figure 13: Mean Time to Repair Estimated from the
Maintenance Records
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Figure 14: Redundancy Analysis Report Showing the List of
Minimal Cut Sets and Their Probabilities at 10000 Hours
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Different Residual Life Estimates

After the conceptual engine component model was built in
TEAMS, various types of analysis, such as redundancy
analysis and reliability analysis, were performed.
Redundancy analysis generates a list of minimal cut sets
based on the TEAMS model and calculates the probability
of each minimal cut set at the user-defined mission time.
Figure 14 shows the redundancy report generated for the
engine component model. There are 24 minimal cut sets in
this model, out of which 17 are singletons (cut sets of size 1)
and 7 are doubletons (cut sets of size 2). The list of minimal
cut sets, the list of components and their failure rates, mean-
time-to-repair, etc., are output to the spares analysis module
to estimate, for a spares allocation scenario, how the system
level availability evolves over time. We simulate two
scenarios, one for different spares allocation schemes and
the other for different residual life time predictions for the
main fuel pump. In the simulation, the mean-time-to-repair
when the spares are out-of-stock is set to be 10 times the
mean-time-to-repair when the spares are in stock. The repair
time is assumed to be exponentially distributed.

Figure 15 shows the system unavailability curves for three
different spare allocation schemes. In the first scheme, we
assume that the number -of spares allocated to. each
component is proportional to its failure rate, i.e., the
component that fails-the most frequently gets the most
spares. The component that fails the most in the system, i.e.,
the Antiicing Valve, gets 20 spares when the stock is being
replenished. In .the second scheme, every component gets
only. half the number of spares as in the first scenario.
Finally, in the third scheme, the Antiicing Valve gets.3
spares, while all the other components get the same number
of spares as in the first scenario.

Figure 16 shows the system unavailability curves when the
residual lifetime prediction of the main fuel pump varies. In

this scenario, we apply the same spares allocation scheme as

10

the first one in the first scenario. In the first case, the
residual life time of the main fuel pump is derived from its
nominal failure frequency, which is approximately 65581
hours. In the other three cases, we assume that based on
prognosis, the main pump’s residual life time has been
updated to 6558, 1312, 656 hours, respectively.

As we can see from Figure 15 and Figure 16, the spares
analysis module allows a user to evaluate and compare
different candidate spares allocation schemes, predict the
system availability trend and select the spares allocation
scheme with the highest system availability and within the
budget - constraints. Moreover, the system availability
prediction is updated whenever the residual life time
estimate for any component in the system based on
prognosis is changed, which allows one to predict future
spares usage and make proactive asset management
decisions.
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5. CONCLUSION

In this paper, an integrated model-based prognostic process
was applied to predict the residual life time of a generic
centrifugal pump system. In this process, we used singular
perturbation methods of control theory, coupled with
dynamic state estimation techniques. An IMM filter was
employed to estimate the degradation measure and the time-
averaged mode probabilities are used to predict the residual
life time. The residual life prediction can be used for
demand forecasting and hence assist in spares allocation and
inventory management. A “smart services” solution
supported by diagnostics and prognostics was also
presented, which integrates maintenance and inventory
management with system operating conditions and health
information collected and inferred by a diagnosis and
prognosis server. A case study was conducted to
demonstrate the process of updating the system availability

~analysis results using the residual life estimates from

prognosis and assessing -the efficacy of different spares
allocation schemes in maximizing system availability.

There are several future extensions-to this research work.
These include handling multiple -degradations in -the
prognosis process, application of the prognosis and spares
allocation assessment processes to real-world systems, and
optimization of spares
approaches.
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